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1. Introduction

The aim of this corrigendum is to prove a stronger version of [4, Theorem 16.4] since its
original form does not fulfill all conditions required for an application in [4, §17]. The result
in question is a consequence of the quantitative factorisation theorem for polynomial orbits
on nilmanifolds that Green and Tao established in [3]. It has been devised as a replacement
for the original (but in the setting of [4] non-applicable) factorisation theorem within the
context of specific arithmetic applications of Green and Tao’s nilpotent Hardy–Littlewood
method, i.e. the machinery behind their celebrated work [2]. Apart from its application in
[4], this result proved essential to the work in [1] and [5].

We briefly describe the differences between our consequence, Theorem 2.3 below, and
Green and Tao’s result. The factorisation theorem [3, Theorem 1.19], which we recall in §2,
is a structure theorem which states (in quantitative terms) that an arbitrary polynomial
sequence g on a nilmanifold may be decomposed as a product εg′γ of three polynomial
sequences, where ε is slowly varying, g′ is highly equidistributed on a certain submani-
fold, and γ is periodic. Unfortunately, the mutual dependencies of the parameters that
quantify the respective properties of ε, g′ and γ are too restrictive as to allow for a direct
application of this result in the settings of [4, 1, 5]. Theorem 2.3 resolves this problem by
essentially replacing upper bounds on integer parameters (e.g. the period of γ) by working
with smooth numbers. This allows one to weaken the interdependence of the parameters
controlling the level of equidistribution of g′ and the bound on the period of γ. Combining
property (3) from Theorem 2.3 with [4, Proposition 15.4], it is then possible to restrict
the original polynomial sequence g to any subprogression of a rather large, but smooth,
common difference without loosing the equidistribution property of g′.

To conclude this short introduction let us mention what goes wrong with the original
application of [4, Theorem 16.4]. As in other applications of the factorisation theorem, one
aims to exploit the fact that the sequences n 7→ g′P (n), which replace the g′ from before,
are equidistributed. In order to access this property within the product sequence n 7→
εP (n)g′P (n)γP (n), it is necessary to split the range of the variable n into subprogressions
on which εP is almost constant and on which γP is constant. For this approach to work,
it is crucial that g′P is still equidistributed when restricted to these new subprogressions.
Precisely this condition is, however, not guaranteed by [4, Theorem 16.4], as stated.
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2. A new factorisation lemma for polynomial nilsequences

To start with, we recall the statement of the factorisation theorem from Green and Tao
[3, Theorem 1.19], referring to their paper for any undefined terms and notation:

Theorem 2.1. Let m, d > 0, and let M0, N > 1 and E > 0 be real numbers. Suppose that
G/Γ is an m-dimensional nilmanifold together with a filtration G• of degree d. Suppose
that X is an M0-rational Mal’cev basis X adapted to G• and that g ∈ poly(Z, G•). Then

there is an integer M with M0 6 M � M
OE,m,d(1)
0 , a rational subgroup G′ ⊆ G, a Mal’cev

basis X ′ for G′/Γ′ in which each element is an M-rational combination of the elements of
X , and a decomposition g = εg′γ into polynomial sequences ε, g′, γ ∈ poly(Z, G•) with the
following properties:

(1) ε : Z→ G is (M,N)-smooth;
(2) g′ : Z→ G′ takes values in G′, and the finite sequence (g(n)Γ′)n6N is totally 1/ME-

equidistributed in G′/Γ′, using the metric dX ′ on G′/Γ′;
(3) γ : Z→ G is M-rational, and (γ(n)Γ)n∈Z is periodic with period at most M .

We shall employ this result in an iterative process. To guarantee that this process
terminates, we will ensure by appealing to the lemma below that in each application of
the above result the rational subgroup G′ is of strictly lower dimension than that of the
ambient group G.

Lemma 2.2. Under the hypotheses of Theorem 2.1, let g ∈ poly(Z, G•), and suppose that
g(n) = ε(n)g′(n)γ(n) is a factorisation which satisfies the conditions (1)–(3). Then there
is a constant C > 1, only depending on m and d, such that whenever E is sufficiently large
and G′ = G, then g is totally M−E/2C-equidistributed.

Proof. Let C > 1 be a constant that will be determined in the course of the proof, and
let P ⊆ {1, . . . , N} be a progression of length at least M−E/2CN . Since the period of γ is
bounded above by M , we may split P into at most M subprogressions, each of length at
least M−(E/(2C)+1)N , on which γ is constant. Next, we split each of these subprogressions
into pieces of diameter between M−((E/(2C)+1)N and 2M−(E/(2C)+1)N . Let P denote the
collection of all the resulting bounded diameter pieces. If F : G/Γ → C is a Lipschitz
function, then the right-invariance of the metric dX (cf. [3, Definition 2.2]) implies for any
n, n′ that belong to the same element Q of P that:

|F (ε(n)g′(n)γ(n)Γ)− F (ε(n′)g′(n)γ(n)Γ)| 6 ‖F‖Lip dX (ε(n)g′(n)γ(n), ε(n′)g′(n)γ(n))

= ‖F‖Lip dX (ε(n), ε(n′))

6 ‖F‖Lip |n− n′|M/N

6 2‖F‖Lip M
−E/(2C).

This estimate allows one to fix for any Q ∈ P the contribution of ε. To see this, choose
for every Q ∈P a fixed element and denote it sQ. Then∑

n∈Q

F (g(n)Γ) =
∑
n∈Q

F (ε(sQ)g′(n)γ(n)Γ) +O(#Q‖F‖LipM
−E/(2C)).
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Let HQ : G/Γ → C denote the map HQ(h) := F (ε(sQ)hΓ), and observe that the approx-

imate left-invariance of dX (cf. [3, Lemma A.5]) implies that ‖HQ‖Lip 6 M
O(1)
0 ‖F‖Lip.

We furthermore have
∫
G/Γ

F =
∫
G/Γ

HQ. The fact that (g′(n)Γ)n6N is totally M−E-

equidistributed inG/Γ implies a similar property for each of the sequences (g′(n)γ(m)Γ)n6N
for fixed m. Indeed, it follows from [4, Proposition 14.3], which is a consequence of [3, The-
orem 2.9], that there is a constant C ′ = BB′ > 1, only depending on m and d, such that
(g′(n)γ(m)Γ)n6N is totally M−E/C′-equidistributed. We set C = C ′. Making use of this
equidistribution property, we obtain∑

n∈Q

F (ε(sQ)g′(n)γ(n)Γ) =
∑
n∈Q

F (ε(sQ)g′(n)γ(nQ)Γ)

=

(∫
G/Γ

F +O
(
M

O(1)
0 M−E/C‖F‖Lip

))
#Q

for any Q ∈P, and, hence,∑
n∈N

F (g(n)Γ) = N

(∫
G/Γ

F + ‖F‖LipO
(
M−E/(2C) +M

O(1)
0 M−E/C

))
.

This completes the proof. �

The following generalisation of [4, Theorem 16.4] is the main result of this paper.

Theorem 2.3 (Factorisation lemma). Let N and T = T (N) be positive integer parameters
that satisfy N1−ε �ε T � N and let k : N → N be a slowly growing function. Let
m, d, B, E and Q0 > 1 be positive integers. Suppose that G/Γ is an m-dimensional
nilmanifold together with a filtration G• of degree d. Suppose that X is a Q0-rational
Mal’cev basis adapted to G•, and that g ∈ poly(Z, G•). Suppose further that Q0 6 log k(N).
Let R = R(N) be a parameter that satisfies R > Q0 and R(N)t �t N for all t > 0.

Then there is an integer Q with Q0 6 Q � Q
OB,m,d(1)
0 and a partition of {1, . . . , T} into

at most ROm,d,B,E(1) disjoint subprogressions P , each of k(N)-smooth common difference
q(P )� ROm,d,B,E(1) and each of length T/q(P ) +O(1), such that the restriction (g(n))n∈P
of g to any of the progressions P can be factorised as follows.

There is a rational subgroup G′ 6 G, depending on P , and a Mal’cev basis X ′ for G′Γ/Γ
such that every element of X ′ is a Q-rational combination of elements from X (that is,
each coefficient is rational of height bounded by Q). Suppose P = {qn + r : 1 6 n 6
T/q +O(1)}, where q = q(P ), then we have a factorisation

g(qn+ r) = εP (n)g′P (n)γP (n) ,

where εP , g
′
P , γP are polynomial sequences from poly(Z, G•) with the properties

(1) εP : Z→ G is (Q, T/q)-smooth;
(2) γP : Z → G arises as the product of at most m Q-rational polynomial sequences

and the sequence (γP (n)Γ)n∈Z is periodic with a k(N)-smooth period qγP 6 Q;
(3) g′P : Z → G′ takes values in G′ and for each k(N)-smooth number q̃ < (qqγPR)E

the finite sequence (g′P (q̃n)Γ′)n6T/(qq̃) is totally Q−B-equidistributed in G′Γ/Γ.
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Our proof requires the fact that a polynomial sequence that fails to be totally equidis-
tributed also fails to be equidistributed when allowing polynomial changes in the equidis-
tribution parameter. This is made precise in [6, Lemma 6.2], which we restate here for
simplicity:

Lemma 2.4. Let N be a positive integer and let δ : N→ [0, 1] be a function that satisfies
δ(x)−t �t x for all t > 0. Suppose that G/Γ is an m-dimensional nilmanifold together
with a filtration G• of degree d, and suppose that G has a 1

δ(N)
-rational Mal’cev basis

adapted to G•. Then there is 1 6 C �d,m 1 such that the following holds. Let E > C be
real, and suppose that g ∈ poly(Z, G•) is a polynomial sequence such that (g(n)Γ)n6N is
δ(N)E-equidistributed. Then (g(n)Γ)n6N is totally δ(N)E/C-equidistributed, provided N is
sufficiently large.

Proof of Lemma 2.3 assuming Lemma 2.4. We may suppose that g does not satisfy (3)
with Q replaced by Q0. That is, there is some k(N)-smooth integer q1 6 RE such that
(g(q1n)Γ)n6T/q1 fails to be totally Q−B0 -equidistributed. By Lemma 2.4, this sequence also

fails to be Q−BC0 -equidistributed for some C = Om,d(1). Writing z1 := (q1)d, we deduce
from [4, Lemma 16.3] that each of the sequences (g(z1n + r1)Γ)n6T/z1 with 0 6 r1 < z1

fails to be Q−BCC
′

0 -equidistributed in G/Γ for some C ′ = Om,d(1). Now, we run through
all 0 6 r1 < z1 in turn.

Applying Theorem 2.1 and Lemma 2.2 to any of these sequences yields some Q0 6 Q1 �
Q
O(B,m,d)
0 , a Q1-rational subgroup G1 < G of dimension strictly smaller than that of G,

and a factorisation

g(z1n+ r1) = εr1(n)g′r1(n)γr1(n),

where the finite sequence (g′r1(n)Γ1)n6T/z1 is totally Q−B1 -equidistributed in

G1/Γ1 := G1/(Γ ∩G1),

where (εr1(n)Γ)n∈Z is (Q1, T/z1)-smooth, and where (γr1(n)Γ)n∈Z is periodic with period
at most Q1.

If g′r1 is totally Q−B1 -equidistributed on every subprogression {n ≡ 0 (mod q2)} of k(N)-
smooth common difference q2 < (z1Q1R)E, then we stop (and turn to the next choice of
r1). Otherwise, invoking Lemma 2.4 and [4, Lemma 16.3] again, there are positive integers
C,C ′ = Od,m(1) and a k(N)-smooth integer q2 as above such that, with z2 := qd2 , the

finite sequence (gr1,r2(n))n6T/(z1z2) defined by gr1,r2(n) := g′r1(z2n+ r2) fails to be Q−BCC
′

1 -
equidistributed for every 0 6 r2 < z2. We proceed as before.

This process yields a tree of operations which has height at most m = dimG, since each
time the factorisation theorem is applied, a new sequence g′r1,...,ri is found that takes values
in some strictly lower dimensional submanifold Gi = Gi(r1, . . . , ri) of Gi−1(r1, . . . , ri−1).
Thus, we can apply the factorisation theorem at most m times in a row before the manifold
involved has dimension 0.

The tree we run through starts with g, which has z1 neighbours gr1 , one for each 0 6 r1 <
z1. For each r1, the vertex gr1 has z2 = z2(r1) neighbours gr1,r2 , one for each 0 6 r2 < z2(r1),
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etc. As a result, we obtain a decomposition of the range {1, . . . , T} into at most ROm,d,B,E(1)

subprogressions of the form

P = {z1(z2(z3(. . . (ztn+ rt) . . . ) + r3) + r2) + r1 : n 6 T/(z1z2 . . . zt)}
= {z1z2 . . . ztn+ r : n 6 T/(z1z2 . . . zt)} ,

for t 6 m, some r, and where each zi depends on r1, . . . , ri−1. The common difference of
such a progression P is k(N)-smooth and bounded by ROm,d,B,E(1). The iteration process
furthermore yields a factorisation of gr1,...,rt , which is the restriction of g to P :

gr1,...,rt(m) = g(z1z2 . . . ztm+ r) = ε̃r1,...,rt(m)g′t(m)γ̃r1,...,rt(m) ,

where
ε̃r1,...,rt(m) = εr1(z2 . . . ztm+ r̃2) . . . εr1,...,rt−1(ztm+ r̃t)εr1,...,rt(m)

for certain integers r̃2, r̃3, . . . , r̃t, and

γ̃r1,...,rt(m) = γr1,...,rt(m)γr1,...,rt−1(ztm+ r̃t) . . . γr1(z2 . . . ztm+ r̃2) .

The factor ε̃r1,...,rt(m) is a (Q
OB,d,m(1)
0 , T/(z1 . . . zt))-smooth sequence. This follows from

the triangle inequality, the right-invariance and the approximate left-invariance of dX ; we
refer to the discussion following Definition 16.1 in [4] for details and to [3, App. A] for the
properties of dX .

Since each γr1,...,ri with i 6 t is periodic with period at most Q
Om,d,B(1)
0 and since t 6 m,

we deduce that γ̃r1,...,rt is periodic with period at most Q
Om,d,B(1)
0 . The bound Q0 6 log k(N)

implies that this period is k(N)-smooth provided N is sufficiently large.
Finally, g′t satisfies property (3) by construction. �

Remark concerning Theorems 15.2 and 15.4 from [4]. The conclusions of these two
results, the latter of which was mentioned in the introduction, can be simplified. Indeed,
the conclusions imply that (g ◦ P (n) (mod Z))n∈[(N/γd′ )

1/d′ ] (resp. (g ◦ P (n)Γ)n∈[(N/γd′ )
1/d′ ])

is totally δ1/Od,d′ (1)-equidistributed in R/Z (resp. G/Γ), provided N is sufficiently large.
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